
Testing 101:
How to Bulletproof Your Deployments with
Automated Code Testing

Chris Wiegman
https://chriswiegman.com | @ChrisWiegman | http://wieg.co/wcmia20

Find today’s slides at:

http://wieg.co/wcmia20

http://wieg.co/wcmia20

About Me
● Senior Software Engineer –

WP Engine
● Speaker, Teacher, Blogger,

Pilot
● Focus on

– Privacy
– Development Workflows
– The Open Web

http://wieg.co/wcmia20

Why Automated Testing
● Prevent regressions
● Can prevent bad code from ever reaching the server
● Safer refactoring
● Automated Q/A can cover the basics humans don’t

need to spend time on
● Higher-quality code

http://wieg.co/wcmia20

Types of Tests

http://wieg.co/wcmia20

The Testing Pyramid

Unit Tests

Integration
Tests

Acceptance
Tests

http://wieg.co/wcmia20

Unit Tests
● Prevent regressions
● Can prevent bad code from ever reaching the server
● Safer refactoring
● Automated Q/A can cover the basics humans don’t

need to spend time on
● Higher-quality code

http://wieg.co/wcmia20

Integration Tests
● Tests groups of functions in aggregate
● Can be most difficult to test in WordPress backend
● Test groups of components or other functionality

http://wieg.co/wcmia20

Acceptance Tests
● Test the product is acceptable
● Tests the whole product
● Often done with external libraries

http://wieg.co/wcmia20

Linting
● Tests individual lines of codes against standards
● Doesn’t look at the output but how the code is written
● Can look at:

– Syntax
– Best practices (security/performance/etc)
– Invalid code

http://wieg.co/wcmia20

Who needs testing?

http://wieg.co/wcmia20

Does Ever Project Need Testing?

Yes

http://wieg.co/wcmia20

Does Ever Project Need Testing?

No

http://wieg.co/wcmia20

Does Ever Project Need Testing?
● Even smallest projects have to be tested to meet the

customers requirements
● ROI on testing is often recognized over time
● Full test suites not justifiable on “throw-away”

projects

http://wieg.co/wcmia20

The best time to start a testing plan is when you
start your project.

http://wieg.co/wcmia20

The 2nd best time to start a testing plan is today.

http://wieg.co/wcmia20

Building a test suite

http://wieg.co/wcmia20

What Tests Should You Implement?
● How long will your project last?
● What tests are appropriate?
● Are you starting from scratch or inheriting code?

http://wieg.co/wcmia20

Every project can benefit from linting.

http://wieg.co/wcmia20

After you know what tests you need to keep your
product/project healthy, you can determine the

budget.

http://wieg.co/wcmia20

Linting

http://wieg.co/wcmia20

Installing Linters: PHP
● PHP_CodeSniffer - https://github.com/squizlabs/PHP_CodeSniffer
● WordPress Coding Standards -

https://github.com/WordPress/WordPress-Coding-Standards
● Set your IDE’s rule or PHP_CodeSniffer to “WordPress”

--

FOUND 8 ERRORS AND 10 WARNINGS AFFECTING 11 LINES

--

 24 | WARNING | [] error_reporting() can lead to full path disclosure.

 24 | WARNING | [] error_reporting() found. Changing configuration at runtime is rarely

 | | necessary.

 37 | WARNING | [x] "require_once" is a statement not a function; no parentheses are

 | | required

http://wieg.co/wcmia20

https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/WordPress/WordPress-Coding-Standards

Installing Linters: JavaScript
● npm -g install eslint, turn on option in editor
● Add to package.json*

{

 "name": "mypackage",

 "version": "0.0.1",

 "eslintConfig": {

 "env": {

 "browser": true,

 "node": true

 }

 }

}

http://wieg.co/wcmia20

Linter Gotchas
● Existing/old code will fail… a lot
● Tune to as strict as practical
● You don’t need all the rules
● Looks at the lowest hanging fruit, doesn’t care about

your logic (or lack thereof)
– Might be enough to get your code through an interview…

and get you in over your head

http://wieg.co/wcmia20

Unit Testing

http://wieg.co/wcmia20

Unit Testing: PHP
● Install PHPUnit via https://phpunit.de/

./phpunit --bootstrap src/autoload.php tests

PHPUnit 9.0.0 by Sebastian Bergmann and contributors.

... 3 / 3 (100%)

Time: 70 ms, Memory: 10.00MB

OK (3 tests, 3 assertions)

http://wieg.co/wcmia20

https://phpunit.de/

http://wieg.co/wcmia20

WordPress Testing Suite

https://make.wordpress.org/core/handbook/testing/automated-testing/
http://wieg.co/wcmia20

Adding Unit Tests to a Plugin
● Setup testing: wp scaffold plugin-tests my-plugin
● Install test suite: bash bin/install-wp-tests.sh

wordpress_test root '' localhost latest
● Run the tests: phpunit

Testing on Windows? Look at https://make.wordpress.org/cli/handbook/plugin-unit-tests/

http://wieg.co/wcmia20

Unit Testing: JavaScript
● npm install -g qunit
● Create tests in a directory. ie. tests/qunit
● Run qunit

– qunit 'tests/qunit/*'

http://wieg.co/wcmia20

Qunit Example
● tests.js <!DOCTYPE html>

<html>
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width">
 <title>QUnit Example</title>
 <link rel="stylesheet" href="https://code.jquery.com/qunit/qunit-
2.9.2.css">
</head>
<body>
 <div id="qunit"></div>
 <div id="qunit-fixture"></div>
 <script src="https://code.jquery.com/qunit/qunit-2.9.2.js"></script>
 <script src="tests.js"></script>
</body>
</html>

http://wieg.co/wcmia20

Qunit Example
● tests.js QUnit.test("hello test", function(assert) {

 assert.ok(1 == "1", "Passed!");

});

http://wieg.co/wcmia20

Keys to Unit Testing
● Functions should have explicit input and output
● Assertions are key
● Not every function requires a unit test
● Testable code is key

http://wieg.co/wcmia20

Writing Testable Code
● Classes shouldn’t instantiate classes. Use factories
● Ask for things, don’t look for things – dependency injection
● Constructors…. Construct
● Global state (and singletons) aren’t very testable
● Inheritance != code re-use
● Polymorphism over conditionals
● Can you isolate the function?

http://wieg.co/wcmia20

Acceptance Testing

http://wieg.co/wcmia20

Acceptance testing is testing the whole application
(website/CLI command/etc).

http://wieg.co/wcmia20

Keys of Acceptance Testing
● Needs the application to be complete (doesn’t look at

small parts)
● Runs the full application in a known good state to

create snapshots
● Compare snapshots to determine problems

http://wieg.co/wcmia20

WP Acceptance
● 10up Project for easy acceptance tests in WordPress
● Full documentation:

https://wpacceptance.readthedocs.io/en/latest/
{

 "environment_instructions": [

 "install wordpress where site url is http://wpacceptance.test and home url is
http://wpacceptance.test",

 "install theme where theme name is twentynineteen"

]

}

http://wieg.co/wcmia20

https://wpacceptance.readthedocs.io/en/latest/

Jest
● https://jestjs.io/
● Tests CLI and other apps

(great for WP-CLI code)
● JavaScript Based

http://wieg.co/wcmia20

https://jestjs.io/

Percy
● https://percy.io/
● Compares screenshots

during CI steps
● Easily integrate with

your repo

http://wieg.co/wcmia20

https://percy.io/

Review and References

http://wieg.co/wcmia20

What About Integration Tests
● Often written using PHPUnit or similar unit test library.

Can also be written like acceptance tests.
● Might test whole of plugin functionality (a whole

feature, perhaps) without looking at the full application.
● Implementation varies greatly.
● Often Unit or Acceptance tests are actually Integration

tests

http://wieg.co/wcmia20

Which Testing to Choose?
● Your project might not need all testing types
● Unit tests assert Acceptance tests snapshot
● Acceptance tests are often easier to start with for

mature projects
● Unit tests, with appropriate coverage, will go further

to limit regressions
● The only bad test is the one not written.

http://wieg.co/wcmia20

Further Reading
● https://eslint.org/
● https://github.com/squizlabs/PHP_CodeSniffer
● https://phpunit.de/
● https://qunitjs.com/
● https://github.com/10up/wpacceptance
● https://make.wordpress.org/core/handbook/testing/automated-te

sting/
● https://testing.googleblog.com/2008/08/by-miko-hevery-so-you-d

ecided-to.html
● https://en.wikipedia.org/wiki/Test-driven_development

http://wieg.co/wcmia20

https://eslint.org/
https://github.com/squizlabs/PHP_CodeSniffer
https://phpunit.de/
https://qunitjs.com/
https://github.com/10up/wpacceptance
https://make.wordpress.org/core/handbook/testing/automated-testing/
https://make.wordpress.org/core/handbook/testing/automated-testing/
https://testing.googleblog.com/2008/08/by-miko-hevery-so-you-decided-to.html
https://testing.googleblog.com/2008/08/by-miko-hevery-so-you-decided-to.html
https://en.wikipedia.org/wiki/Test-driven_development

Questions?

http://wieg.co/wcmia20

http://chriswiegman.com | @ChrisWiegman | http://wieg.co/wcmia20

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

